3.4.2 \(\int x (a+b x)^{5/2} \, dx\) [302]

Optimal. Leaf size=34 \[ -\frac {2 a (a+b x)^{7/2}}{7 b^2}+\frac {2 (a+b x)^{9/2}}{9 b^2} \]

[Out]

-2/7*a*(b*x+a)^(7/2)/b^2+2/9*(b*x+a)^(9/2)/b^2

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {45} \begin {gather*} \frac {2 (a+b x)^{9/2}}{9 b^2}-\frac {2 a (a+b x)^{7/2}}{7 b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(a + b*x)^(5/2),x]

[Out]

(-2*a*(a + b*x)^(7/2))/(7*b^2) + (2*(a + b*x)^(9/2))/(9*b^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int x (a+b x)^{5/2} \, dx &=\int \left (-\frac {a (a+b x)^{5/2}}{b}+\frac {(a+b x)^{7/2}}{b}\right ) \, dx\\ &=-\frac {2 a (a+b x)^{7/2}}{7 b^2}+\frac {2 (a+b x)^{9/2}}{9 b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 24, normalized size = 0.71 \begin {gather*} \frac {2 (a+b x)^{7/2} (-2 a+7 b x)}{63 b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(a + b*x)^(5/2),x]

[Out]

(2*(a + b*x)^(7/2)*(-2*a + 7*b*x))/(63*b^2)

________________________________________________________________________________________

Mathics [C] Result contains higher order function than in optimal. Order 9 vs. order 2 in optimal.
time = 2.18, size = 64, normalized size = 1.88 \begin {gather*} \text {Piecewise}\left [\left \{\left \{\frac {2 \left (-2 a^4+a^3 b x+b^2 x^2 \left (15 a^2+19 a b x+7 b^2 x^2\right )\right ) \sqrt {a+b x}}{63 b^2},b\text {!=}0\right \}\right \},\frac {a^{\frac {5}{2}} x^2}{2}\right ] \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[x^1*(a + b*x)^(5/2),x]')

[Out]

Piecewise[{{2 (-2 a ^ 4 + a ^ 3 b x + b ^ 2 x ^ 2 (15 a ^ 2 + 19 a b x + 7 b ^ 2 x ^ 2)) Sqrt[a + b x] / (63 b
 ^ 2), b != 0}}, a ^ (5 / 2) x ^ 2 / 2]

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 26, normalized size = 0.76

method result size
gosper \(-\frac {2 \left (b x +a \right )^{\frac {7}{2}} \left (-7 b x +2 a \right )}{63 b^{2}}\) \(21\)
derivativedivides \(\frac {\frac {2 \left (b x +a \right )^{\frac {9}{2}}}{9}-\frac {2 a \left (b x +a \right )^{\frac {7}{2}}}{7}}{b^{2}}\) \(26\)
default \(\frac {\frac {2 \left (b x +a \right )^{\frac {9}{2}}}{9}-\frac {2 a \left (b x +a \right )^{\frac {7}{2}}}{7}}{b^{2}}\) \(26\)
trager \(-\frac {2 \left (-7 b^{4} x^{4}-19 a \,b^{3} x^{3}-15 a^{2} b^{2} x^{2}-a^{3} b x +2 a^{4}\right ) \sqrt {b x +a}}{63 b^{2}}\) \(54\)
risch \(-\frac {2 \left (-7 b^{4} x^{4}-19 a \,b^{3} x^{3}-15 a^{2} b^{2} x^{2}-a^{3} b x +2 a^{4}\right ) \sqrt {b x +a}}{63 b^{2}}\) \(54\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*x+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/b^2*(1/9*(b*x+a)^(9/2)-1/7*a*(b*x+a)^(7/2))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 26, normalized size = 0.76 \begin {gather*} \frac {2 \, {\left (b x + a\right )}^{\frac {9}{2}}}{9 \, b^{2}} - \frac {2 \, {\left (b x + a\right )}^{\frac {7}{2}} a}{7 \, b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)^(5/2),x, algorithm="maxima")

[Out]

2/9*(b*x + a)^(9/2)/b^2 - 2/7*(b*x + a)^(7/2)*a/b^2

________________________________________________________________________________________

Fricas [A]
time = 0.30, size = 52, normalized size = 1.53 \begin {gather*} \frac {2 \, {\left (7 \, b^{4} x^{4} + 19 \, a b^{3} x^{3} + 15 \, a^{2} b^{2} x^{2} + a^{3} b x - 2 \, a^{4}\right )} \sqrt {b x + a}}{63 \, b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)^(5/2),x, algorithm="fricas")

[Out]

2/63*(7*b^4*x^4 + 19*a*b^3*x^3 + 15*a^2*b^2*x^2 + a^3*b*x - 2*a^4)*sqrt(b*x + a)/b^2

________________________________________________________________________________________

Sympy [A]
time = 0.28, size = 102, normalized size = 3.00 \begin {gather*} \begin {cases} - \frac {4 a^{4} \sqrt {a + b x}}{63 b^{2}} + \frac {2 a^{3} x \sqrt {a + b x}}{63 b} + \frac {10 a^{2} x^{2} \sqrt {a + b x}}{21} + \frac {38 a b x^{3} \sqrt {a + b x}}{63} + \frac {2 b^{2} x^{4} \sqrt {a + b x}}{9} & \text {for}\: b \neq 0 \\\frac {a^{\frac {5}{2}} x^{2}}{2} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)**(5/2),x)

[Out]

Piecewise((-4*a**4*sqrt(a + b*x)/(63*b**2) + 2*a**3*x*sqrt(a + b*x)/(63*b) + 10*a**2*x**2*sqrt(a + b*x)/21 + 3
8*a*b*x**3*sqrt(a + b*x)/63 + 2*b**2*x**4*sqrt(a + b*x)/9, Ne(b, 0)), (a**(5/2)*x**2/2, True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 182 vs. \(2 (26) = 52\).
time = 0.00, size = 297, normalized size = 8.74 \begin {gather*} \frac {\frac {2 b^{3} \left (\frac {1}{9} \sqrt {a+b x} \left (a+b x\right )^{4}-\frac {4}{7} \sqrt {a+b x} \left (a+b x\right )^{3} a+\frac {6}{5} \sqrt {a+b x} \left (a+b x\right )^{2} a^{2}-\frac {4}{3} \sqrt {a+b x} \left (a+b x\right ) a^{3}+\sqrt {a+b x} a^{4}\right )}{b^{4}}+\frac {6 a b^{2} \left (\frac {1}{7} \sqrt {a+b x} \left (a+b x\right )^{3}-\frac {3}{5} \sqrt {a+b x} \left (a+b x\right )^{2} a+\sqrt {a+b x} \left (a+b x\right ) a^{2}-\sqrt {a+b x} a^{3}\right )}{b^{3}}+\frac {6 a^{2} b \left (\frac {1}{5} \sqrt {a+b x} \left (a+b x\right )^{2}-\frac {2}{3} \sqrt {a+b x} \left (a+b x\right ) a+\sqrt {a+b x} a^{2}\right )}{b^{2}}+\frac {2 a^{3} \left (\frac {1}{3} \sqrt {a+b x} \left (a+b x\right )-a \sqrt {a+b x}\right )}{b}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)^(5/2),x)

[Out]

2/315*(105*((b*x + a)^(3/2) - 3*sqrt(b*x + a)*a)*a^3/b + 63*(3*(b*x + a)^(5/2) - 10*(b*x + a)^(3/2)*a + 15*sqr
t(b*x + a)*a^2)*a^2/b + 27*(5*(b*x + a)^(7/2) - 21*(b*x + a)^(5/2)*a + 35*(b*x + a)^(3/2)*a^2 - 35*sqrt(b*x +
a)*a^3)*a/b + (35*(b*x + a)^(9/2) - 180*(b*x + a)^(7/2)*a + 378*(b*x + a)^(5/2)*a^2 - 420*(b*x + a)^(3/2)*a^3
+ 315*sqrt(b*x + a)*a^4)/b)/b

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 25, normalized size = 0.74 \begin {gather*} -\frac {18\,a\,{\left (a+b\,x\right )}^{7/2}-14\,{\left (a+b\,x\right )}^{9/2}}{63\,b^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*x)^(5/2),x)

[Out]

-(18*a*(a + b*x)^(7/2) - 14*(a + b*x)^(9/2))/(63*b^2)

________________________________________________________________________________________